Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Prod Econ ; 263: 108935, 2023 Sep.
Article in English | MEDLINE | ID: covidwho-20233569

ABSTRACT

The COVID-19 pandemic has illustrated the unprecedented challenges of ensuring the continuity of operations in a supply chain as suppliers' and their suppliers stop producing due the spread of infection, leading to a degradation of downstream customer service levels in a ripple effect. In this paper, we contextualize a dynamic approach and propose an optimal control model for supply chain reconfiguration and ripple effect analysis integrated with an epidemic dynamics model. We provide supply chain managers with the optimal choice over a planning horizon among subsets of interchangeable suppliers and corresponding orders; this will maximize demand satisfaction given their prices, lead times, exposure to infection, and upstream suppliers' risk exposure. Numerical illustrations show that our prescriptive forward-looking model can help reconfigure a supply chain and mitigate the ripple effect due to reduced production because of suppliers' infected workers. A risk aversion factor incorporates a measure of supplier risk exposure at the upstream echelons. We examine three scenarios: (a) infection limits the capacity of suppliers, (b) the pandemic recedes but not at the same pace for all suppliers, and (c) infection waves affect the capacity of some suppliers, while others are in a recovery phase. We illustrate through a case study how our model can be immediately deployed in manufacturing or retail supply chains since the data are readily accessible from suppliers and health authorities. This work opens new avenues for prescriptive models in operations management and the study of viable supply chains by combining optimal control and epidemiological models.

2.
International Journal of Production Research ; 61(5):1642-1663, 2023.
Article in English | ProQuest Central | ID: covidwho-2253168

ABSTRACT

A pandemic can wreak havoc in supply chains, as witnessed in the COVID-19 context. As workers get infected, production level drops and demand from customers goes unfulfilled. Combining in a novel way an epidemic model with optimal control theory, our model provides a plant manager with the optimal level of prophylactic effort she needs to deploy over a planning horizon to protect the workforce from a pandemic in its early stage and so maintain production levels. Given the production planning problem, the effort in terms of prophylactic measures can be optimally determined in closed form, balancing worker protection against production requirements in a single step. The manager must initially implement the strictest measures before relaxing them in time. Three extensions are presented:, (1) determine the optimal period of time over which the prophylactic measures should be maintained;(2) determine the optimal effort in terms of prophylactic measures in the case of an endemic disease;and (3) assess the effect of a stochastic exogenous shock on the total number of infected. This research provides a production planning model that allows a decision-maker to mitigate the impact of worker absenteeism at the onset of a pandemic, thus improving supply chain resilience.

3.
International Journal of Production Research ; 61(8):2493-2512, 2023.
Article in English | ProQuest Central | ID: covidwho-2253167

ABSTRACT

An increasing number of disruptions in ports, plants and warehouses have generated ripple effects over supply networks impacting economic activity. We demonstrate how the spread of the pandemic geographically expands the ripple effect by reducing the workers' participation in production, so undermining the ability of firms and, as a result, the entire cross-border sup- ply chain network to satisfy customers' demands. Our model of the spatio-temporal dynamics of the propagation of Covid-19 infection for supply networks contributes toward ripple effect visualisation and quantification by combining the flow of goods and materials through a typical global supply chain with an epidemiological model. The model enables prospective analyses to be performed in what-if scenarios to simulate the impact on the workforce in each node. The outcome should be helpful tools for managers and scholars. Results from this research will help mitigate the impact and spread of a pandemic in a particular region and the ability of a supply network to overcome the ripple effect. A stylised case study of a cross-border supply chain illustrates the ripple effect by showing how waves with crests at varying dates impact the ability to serve demand showing how a supply chain manager can obtain a forward-looking picture.

4.
Ann Oper Res ; : 1-24, 2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2239401

ABSTRACT

The COVID-19 pandemic wreaks havoc in supply chains by reducing the production capacity of some essential suppliers, closure of production facilities or the absence of infected workers. In this paper, we present three decision support models for a plant manager to help in deciding on (a) the level of protection of the workforce against the spread of the virus in the absence of regional protection measures, (b) on the duration of the protection, and (c) the level of protection of the workforce with regional protection measures enforced by health authorities. These decision models are based on a SIS epidemiological model which takes into account the possibility that a worker can infect others but also that even when recovered can be infected again. The first and third models prescribe how, in time, the protection effort in terms of prophylactic measures must be deployed. The second model extends the first one as it also determines the length the protection effort must be deployed. The proposed models have been applied to the case of a meat processing plant that must satisfy the demand of a large-scale retailer. Clearly, to achieve production targets and satisfy customers' demand, plants in this labor-intensive industry rely on the number of healthy workers and the service level of suppliers. Our results indicate that these models provide managers with the tools to understand and measure the impact of an infection on production and the corresponding cost. Along the way, this work illustrates the ripple effect as suppliers affected by the pandemic are unable to fulfill the processing plant requirements and so the retailer's orders. Our findings provide normative guidance for supply chain decision support systems under risk of pandemic induced disruptions using a quantitative model-based approach.

5.
Annals of Operations Research ; : 1-24, 2023.
Article in English | EuropePMC | ID: covidwho-2218518

ABSTRACT

The COVID-19 pandemic wreaks havoc in supply chains by reducing the production capacity of some essential suppliers, closure of production facilities or the absence of infected workers. In this paper, we present three decision support models for a plant manager to help in deciding on (a) the level of protection of the workforce against the spread of the virus in the absence of regional protection measures, (b) on the duration of the protection, and (c) the level of protection of the workforce with regional protection measures enforced by health authorities. These decision models are based on a SIS epidemiological model which takes into account the possibility that a worker can infect others but also that even when recovered can be infected again. The first and third models prescribe how, in time, the protection effort in terms of prophylactic measures must be deployed. The second model extends the first one as it also determines the length the protection effort must be deployed. The proposed models have been applied to the case of a meat processing plant that must satisfy the demand of a large-scale retailer. Clearly, to achieve production targets and satisfy customers' demand, plants in this labor-intensive industry rely on the number of healthy workers and the service level of suppliers. Our results indicate that these models provide managers with the tools to understand and measure the impact of an infection on production and the corresponding cost. Along the way, this work illustrates the ripple effect as suppliers affected by the pandemic are unable to fulfill the processing plant requirements and so the retailer's orders. Our findings provide normative guidance for supply chain decision support systems under risk of pandemic induced disruptions using a quantitative model-based approach.

6.
International Journal of Production Research ; : 1-20, 2022.
Article in English | Web of Science | ID: covidwho-2069949

ABSTRACT

An increasing number of disruptions in ports, plants and warehouses have generated ripple effects over supply networks impacting economic activity. We demonstrate how the spread of the pandemic geographically expands the ripple effect by reducing the workers' participation in production, so undermining the ability of firms and, as a result, the entire cross-border sup- ply chain network to satisfy customers' demands. Our model of the spatio-temporal dynamics of the propagation of Covid-19 infection for supply networks contributes toward ripple effect visualisation and quantification by combining the flow of goods and materials through a typical global supply chain with an epidemiological model. The model enables prospective analyses to be performed in what-if scenarios to simulate the impact on the workforce in each node. The outcome should be helpful tools for managers and scholars. Results from this research will help mitigate the impact and spread of a pandemic in a particular region and the ability of a supply network to overcome the ripple effect. A stylised case study of a cross-border supply chain illustrates the ripple effect by showing how waves with crests at varying dates impact the ability to serve demand showing how a supply chain manager can obtain a forward-looking picture.

7.
International Journal of Retail & Distribution Management ; 50(8/9):897-899, 2022.
Article in English | ProQuest Central | ID: covidwho-1992494

ABSTRACT

[...]the new needs and the disruptions in the supply chains able to provide for them have led to extensive inventory problems throughout the retail industry, from garments, to cars, to electronic products and food. In the second, the focus of study is mobile shopping. Since this new channel became of age, retailers have been trying to harness its power. [...]these contributions show that retail management has yet to find the best ways to resolve the challenges posed by the pandemic and at the same time the wide range of topics with which both researchers and practitioners are grappling.

8.
International Journal of Production Research ; : 1-22, 2022.
Article in English | Taylor & Francis | ID: covidwho-1750012
SELECTION OF CITATIONS
SEARCH DETAIL